# Overview This document describes an example workload of the Intel® Data Center GPU Max Series. ## AI workflows **Computer vision examples:** - [Model Zoo ResNet-50-v1.5 image classification inference](https://github.com/IntelAI/models/blob/master/quickstart/image_recognition/pytorch/resnet50v1_5/inference/gpu/DEVCATALOG_MAX.md) using Intel® Extension for PyTorch on Intel® Max Series GPU - [Model Zoo ResNet-50-v1.5 image classification training](https://github.com/IntelAI/models/blob/master/quickstart/image_recognition/pytorch/resnet50v1_5/training/gpu/DEVCATALOG.md) on Intel® Data Center GPU Max Series using Intel® Extension for PyTorch - [Model Zoo ResNet-50-v1.5 image classification training](https://github.com/IntelAI/models/blob/master/quickstart/image_recognition/tensorflow/resnet50v1_5/training/gpu/DEVCATALOG.md) using Intel® Extension for TensorFlow on Intel® Data Center GPU Max Series **Natural Language Processing (LLM) examples:** - [BERT large training](https://github.com/IntelAI/models/blob/master/quickstart/language_modeling/pytorch/bert_large/training/gpu/DEVCATALOG.md) using PyTorch framework and MLCommons dataset - [BERT large inference](https://github.com/IntelAI/models/blob/master/quickstart/language_modeling/pytorch/bert_large/inference/gpu/DEVCATALOG.md) using PyTorch framework and SQUAD dataset ## High-performance computing | Domain | Procedure | | ------------- | ------------------------------------------------ | | System test | [Stream Triad (BabelSTREAM)](hpc/BabelSTREAM.md) | | System test | [DGEMM](hpc/DGEMM.md) | | Life sciences | [LAMMPS](hpc/LAMMPS.md) | | Life sciences | [AutoDock-GPU](hpc/autodock.md) | | FSI | [Binomial Options](hpc/binomial.md) | | FSI | [Black-Scholes](hpc/black_scholes.md) | | FSI | [Monte Carlo](hpc/monte_carlo.md) | | Physics | [DPEcho](hpc/DPEcho.md) |